GNN - Genome News Network  
  Home | About | Topics
Biology of an extremophile
In the Literature.

Here, GNN highlights five research papers on Methanococcus jannaschii related to the feature The First Sequenced Extremophile: What scientists have learned from the M. jannaschii genome


Novel Type of ADP-Forming Acetyl Coenzyme A Synthetase in Hyperthermophilic Archaea: Heterologous Expression and Characterization of Isoenzymes from the Sulfate Reducer Archaeoglobus fulgidus and the Methanogen Methanococcus jannaschii.

Acetyl coenzyme A (CoA) synthetase (ADP forming) (ACD) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) right harpoon over left harpoon acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ACD in archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145-kDa heterotetramers (alpha(2), beta(2)). The coding genes for the alpha and beta subunits are located at different sites in the P. furiosus chromosome. Based on significant sequence similarity of the P. furiosus genes, five open reading frames (ORFs) encoding putative ACD were identified in the genome of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus and one ORF was identified in the hyperthermophilic methanogen Methanococcus jannaschii. The ORFs constitute fusions of the homologous P. furiosus genes encoding the alpha and beta subunits. Two ORFs, AF1211 and AF1938, of A. fulgidus and ORF MJ0590 of M. jannaschii were cloned and functionally overexpressed in Escherichia coli. The purified recombinant proteins were characterized as distinctive isoenzymes of ACD with different substrate specificities. In contrast to the Pyrococcus ACD, the ACDs of Archaeoglobus and Methanococcus constitute homodimers of about 140 kDa composed of two identical 70-kDa subunits, which represent fusions of the homologous P. furiosus alpha and beta subunits in an alphabeta (AF1211 and MJ0590) or betaalpha (AF1938) orientation. The data indicate that A. fulgidus and M. jannaschii contains a novel type of ADP-forming acetyl-CoA synthetase in Archaea, in which the subunit polypeptides and their coding genes are fused.

J Bacteriol. 2002 Feb;184(3):636-44.

Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins.

Archaeal flagella are unique motility structures, and the absence of bacterial structural motility genes in the complete genome sequences of flagellated archaeal species suggests that archaeal flagellar biogenesis is likely mediated by novel components. In this study, a conserved flagellar gene family from each of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii has been characterized. These species possess multiple flagellin genes followed immediately by eight known and supposed flagellar accessory genes, flaCDEFGHIJ. Sequence analyses identified a conserved Walker box A motif in the putative nucleotide binding proteins FlaH and FlaI that may be involved in energy production for flagellin secretion or assembly. Northern blotting studies demonstrated that all the species have abundant polycistronic mRNAs corresponding to some of the structural flagellin genes, and in some cases several flagellar accessory genes were shown to be cotranscribed with the flagellin genes. Cloned flagellar accessory genes of M. voltae were successfully overexpressed as His-tagged proteins in Escherichia coli. These recombinant flagellar accessory proteins were affinity purified and used as antigens to raise polyclonal antibodies for localization studies. Immunoblotting of fractionated M. voltae cells demonstrated that FlaC, FlaD, FlaE, FlaH, and FlaI are all present in the cell as membrane-associated proteins but are not major components of isolated flagellar filaments. Interestingly, flaD was found to encode two proteins, each translated from a separate ribosome binding site. These protein expression data indicate for the first time that the putative flagellar accessory genes of M. voltae, and likely those of other archaeal species, do encode proteins that can be detected in the cell.

J Bacteriol 2001 Dec;183(24):7154-64.

The biochemical properties and phylogenies of phosphofructokinases from extremophiles.

The enzyme phosphofructokinase (PFK) is a defining activity of the highly conserved glycolytic pathway, and is present in the domains Bacteria, Eukarya, and Archaea. PFK subtypes are now known that utilize either ATP, ADP, or pyrophosphate as the primary phosphoryl donor and share the ability to catalyze the transfer of phosphate to the 1-position of fructose-6-phosphate. Because of the crucial position in the glycolytic pathway of PFKs, their biochemical characteristics and phylogenies may play a significant role in elucidating the origins of glycolysis and, indeed, of metabolism itself. Despite the shared ability to phosphorylate fructose-6-phosphate, PFKs that have been characterized to date now fall into three sequence families: the PFKA family, consisting of the well-known higher eukaryotic ATP-dependent PFKs together with their ATP- and pyrophosphate-dependent bacterial cousins (including the crenarchaeal pyrophosphate-dependent PFK of Thermoprotetus tenax) and plant pyrophosphate-dependent phosphofructokinases; the PFKB family, exemplified by the minor ATP-dependent PFK activity of Escherichia coli (PFK 2), but which also includes at least one crenarchaeal enzyme in Aeropyrum pernix; and the tentatively named PFKC family, which contains the unique ADP-dependent PFKs from the euryarchaeal genera of Pyrococcus and Thermococcus, which are indicated by sequence analysis to be present also in the methanogenic species Methanococcus jannaschii and Methanosarcina mazei.

Extremophiles 2001 Dec;5(6):357-73.

Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex.

The eukaryotic subunits RPB4 and RPB7 form a heterodimer that reversibly associates with the RNA polymerase II core and constitute the only two components of the enzyme for which no structural information is available. We have determined the crystal structure of the complex between the Methanococcus jannaschii subunits E and F, the archaeal homologs of RPB7 and RPB4. Subunit E has an elongated two-domain structure and contains two potential RNA binding motifs, while the smaller F subunit wraps around one side of subunit E, at the interface between the two domains. We propose a model for the interaction between RPB4/RPB7 and the core RNA polymerase in which the RNA binding face of RPB7 is positioned to interact with the nascent RNA transcript.

Mol Cell 2001 Nov;8(5):1137-43.

Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis.

Methanococcus jannaschii is an autotrophic archaeon originally isolated from an oceanic thermal vent. The primary metabolic pathway for energy production in this hyperthermophilic microbe is methanogenesis from H2 and CO2. As an autotroph, M. jannaschii requires only CO2 as a carbon source for synthesizing all necessary biomolecules. Changes in the environmental availability of these molecules can be expected to activate regulatory mechanisms manifested as the up and down regulation of specific genes and the concomitant increase and decrease in abundance of the corresponding proteins. In our analysis of the proteome of M. jannaschii, we have observed significant changes in the abundance of a common subset of predominant proteins in response to reduced H2 concentration, limited ammonium availability, and the stage of cell growth (exponential compared with stationary). The masses of tryptic peptides from these proteins match those predicted by M. jannaschii genome open reading frames annotated as flagellin B1 (MJ0891) and flagellin B2 (MJ0892). Multiple proteins with different isoelectric points and molecular weights match each of these proteins, and the abundance of these protein variants changes with growth conditions. These data indicate that structural modifications altering both the isoelectric point and size of the M. jannaschii flagellin B1 and B2 proteins occur in response to growth conditions and growth stage of M. jannaschii and further suggest the regulation of M. jannaschii motility through structural modifications of the building blocks of the flagella.

Proteomics 2001 Aug;1(8):1033-42.

. . .

Back to GNN Home Page