GNN - Genome News Network  
  Home | About | Topics
   
More on anthrax
  
In the Literature.

Here GNN posts abstracts of scientific papers on genomics and biological warfare, the anthrax bacterium, and efforts to understand anthrax disease.

 

Genomics and future biological weapons: the need for preventive action by the biomedical community

There is an increasing concern within both the scientific and security communities that the ongoing revolution in biology has great potential to be misused in offensive biological weapons programs. In light of the 11 September tragedy, we can no longer afford to be complacent about the possibility of biological terrorism. Here we review the major relevant trends in genomics research and development, and discuss how these capabilities might be misused in the design of new bioweapons. We also discuss how the breakthroughs that have come from the genomics revolution may be used to enhance detection, protection and treatment so that biological warfare agents are never used.

Nature Genetics, Published online: 22 October 2001.


Toxins of Bacillus anthracis

Bacillus anthracis, a gram positive bacterium, is the causative agent of anthrax. This organism is capsulogen and toxinogenic. It secretes two toxins which are composed of three proteins: the protective antigen (PA), the lethal factor (LF) and the edema factor (EF). The lethal toxin (PA+LF) provokes a subit death in animals, the edema toxin (PA+EF) induces edema. The edema and the lethal factors are internalised into the eukaryotic target cells via the protective antigen. EF and LF exert a calmoduline dependent adenylate cyclase and a metalloprotease activity respectively. Progress in the structure-function relationship of these three proteins, their regulation mechanisms and their roles in pathogenesis and immunoprotection will be exposed.

Toxicon 2001 Nov;39(11):1747-55.


Designing a polyvalent inhibitor of anthrax toxin

Screening peptide libraries is a proven strategy for identifying inhibitors of protein-ligand interactions. Compounds identified in these screens often bind to their targets with low affinities. When the target protein is present at a high density on the surface of cells or other biological surfaces, it is sometimes possible to increase the biological activity of a weakly binding ligand by presenting multiple copies of it on the same molecule. We isolated a peptide from a phage display library that binds weakly to the heptameric cell-binding subunit of anthrax toxin and prevents the interaction between cell-binding and enzymatic moieties. A molecule consisting of multiple copies of this nonnatural peptide, covalently linked to a flexible backbone, prevented assembly of the toxin complex in vitro and blocked toxin action in an animal model. This result demonstrates that protein-protein interactions can be inhibited by a synthetic, polymeric, polyvalent inhibitor in vivo.

Nat Biotechnol 2001 Oct;19(10):958-61.


Delayed life-threatening reaction to anthrax vaccine

BACKGROUND: Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis. Due to the current world threat of unpredictable biological terrorism, the Department of Defense has mandated the systematic vaccination of all US military personnel against this warfare agent. Many may experience al mild flu-like illness and soreness at the injection site, but systemic reactions are rare. CASE REPORT: We report a delayed and potentially serious life-threatening adverse reaction to anthrax vaccine. A previously healthy 34-year-old male was transported to the emergency department with dyspnea, diaphoresis, pallor, and urticarial wheals on his face, arms, and torso after the administration of the third dose of anthrax vaccine. All symptoms resolved after pharmacological intervention and the patient was discharged. Pharmaco-epidemiological data indicate that 30% of anthrax vaccine recipients experience mild local reactions. With large numbers of military personnel being vaccinated, emergency physicians may encounter more vaccine-related adverse reactions.

J Toxicol Clin Toxicol 2001;39(1):81-4.


In vitro correlate of immunity in a rabbit model of inhalational anthrax

A serological correlate of vaccine-induced immunity was identified in the rabbit model of inhalational anthrax. Animals were inoculated intramuscularly at 0 and 4 weeks with varying doses of Anthrax Vaccine Adsorbed (AVA) ranging from a human dose to a 1:256 dilution in phosphate-buffered saline (PBS). At 6 and 10 weeks, both the quantitative anti-protective antigen (PA) IgG ELISA and the toxin-neutralizing antibody (TNA) assays were used to measure antibody levels to PA. Rabbits were aerosol-challenged at 10 weeks with a lethal dose (84-133 LD(50)) of Bacillus anthracis spores. All the rabbits that received the undiluted and 1:4 dilution of vaccine survived, whereas those receiving the higher dilutions of vaccine (1:16, 1:64 and 1:256) had deaths in their groups. Results showed that antibody levels to PA at both 6 and 10 weeks were significant (P<0.0001) predictors of survival.

Vaccine 2001 Sep 14;19(32):4768-73.


Passive transfer of protection against Bacillus anthracis infection in a murine model

Passive transfer of lymphocytes and sera from mice immunised using two different formulations containing recombinant protective antigen (rPA) have been used to further elucidate the mechanism of protection against Bacillus anthracis infection. The results demonstrated that an antibody response maybe important in protection against B. anthracis infection, under the conditions tested. The results provide further data for the development of an improved anthrax vaccine.

Vaccine 2001 Aug 14;19(31):4409-16.


Anthrax toxin

Anthrax is primarily a disease of herbivores caused by gram-positive, aerobic, spore-forming Bacillus anthracis. Humans are accidental hosts through the food of animal origin and animal products. Anthrax is prevelant in most parts of the globe, and cases of anthrax have been reported from almost every country. Three forms of the disease have been recognized: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). The major virulence factors of Bacillus anthracis are a poly-D glutamic acid capsule and a three-component protein exotoxin. The genes coding for the toxin and the enzymes responsible for capsule production are carried on plasmid pXO1 and pXO2, respectively. The three proteins of the exotoxin are protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). The toxins follow the A-B model with PA being the B moeity and LF/EF, the alternative A moeities. LF and EF are individually nontoxic, but in combination with PA form two toxins causing different pathogenic responses in animals and cultured cells. PA + LF forms the lethal toxin and PA + EF forms the edema toxin. During the process of intoxication, PA binds to the cell surface receptor and is cleaved at the sequence RKKR (167) by cell surface proteases such as furin generating a cell-bound, C-terminal 63 kDa protein (PA63). PA63 possesses a binding site to which LF or EF bind with high affinity. The complex is then internalized by receptor-mediated endocytosis. Acidification of the vesicle leads to instertion of PA63 into the endosomal membrane and translocation of LF/EF across the bilayer into the cytosol where they exert their toxic effects. EF has a calcium- and calmodulin-dependent adenylate cyclase activity. Recent reports indicate that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and 2), and this cleavage inactivates MAPKK1 and thus inhibits the mitogen-activated protein kinase signal transduction pathway. We describe in detail the studies so far done on unraveling the molecular mechanisms of pathogenesis of Bacillus anthracis.

Crit Rev Microbiol 2001;27(3):167-200.


Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin

The efficacy of a licensed human anthrax vaccine (Anthrax Vaccine Adsorbed (AVA)) was tested in guinea pigs, rabbits, and rhesus macaques against spore challenge by Bacillus anthracis isolates of diverse geographical origin. Initially, groups of Hartley guinea pigs were vaccinated at 0 and 4 weeks with AVA, then challenged intramuscularly at 10 weeks with spores from 33 isolates of B. anthracis. Survival among the vaccinated groups varied from 6 to 100%, although there were no differences in mean time to death among the groups. There was no correlation between isolate virulence and variable number tandem repeat category or protective antigen genotype identified. New Zealand white rabbits were then vaccinated with AVA at 0 and 4 weeks, and challenged at 10 weeks by aerosol with spores from six of the isolates that were highly virulent in vaccinated guinea pigs. AVA completely protected the rabbits from four of the isolates, and protected 90% of the animals from the other two isolates. Subsequently, two of these six isolates were then used to challenge rhesus macaques, previously vaccinated with AVA at 0 and 4 weeks, and challenged at 10 weeks by aerosol. AVA protected 80 and 100% of the animals from these two isolates. These studies demonstrated that, although AVA confers variable protection against different B. anthracis isolates in guinea pigs, it is highly protective against these same isolates in both rabbits and rhesus macaques.

Vaccine 2001 Apr 30;19(23-24):3241-7.


Study of immunization against anthrax with the purified recombinant protective antigen of Bacillus anthracis

Protective antigen (PA) of anthrax toxin is the major component of human anthrax vaccine. Currently available human vaccines in the United States and Europe consist of alum-precipitated supernatant material from cultures of toxigenic, nonencapsulated strains of Bacillus anthracis. Immunization with these vaccines requires several boosters and occasionally causes local pain and edema. We previously described the biological activity of a nontoxic mutant of PA expressed in Bacillus subtilis. In the present study, we evaluated the efficacy of the purified mutant PA protein alone or in combination with the lethal factor and edema factor components of anthrax toxin to protect against anthrax. Both mutant and native PA preparations elicited high anti-PA titers in Hartley guinea pigs. Mutant PA alone and in combination with lethal factor and edema factor completely protected the guinea pigs from B. anthracis spore challenge. The results suggest that the mutant PA protein may be used to develop an effective recombinant vaccine against anthrax.

Infect Immun 1998 Jul;66(7):3447-8.

. . .

Back to GNN Home Page